Prototyping the GMT Telescope Metrology System on LBT

Presented by Andrew Rakich
Optical Designer
Summary

- Description of Laser Truss Metrology System
- Etalon Absolute Multiline Technology
- Prototyping on LBT
- Results to date
- Future work
In 2016 GMTO adopted the idea of a "Telescope Metrology System" (TMS) into the baseline plan. Seen to address a gap between the expected accuracy of open-loop modelling of optics positions given thermal and gravity deflections, and "good" starting points for the Acquisition, Guiding and Wavefront Sensing system (AGWS).

The system allows the measurement and control of all mirror segments, aligning them to the Gregorian Rotator axis, with errors at the micron level, and with measurement cadences of several seconds. Of several 3-D metrology technological approaches considered, a "Laser Truss" incorporating multiple fixed absolute distance measuring interferometers, was selected.

Given that this technology had never been employed on ground based telescopes, it was deemed necessary to conduct an extensive prototyping and R&D program prior to finalizing the GMT design.

The GMT Telescope Metrology System

<table>
<thead>
<tr>
<th>Degree of Freedom</th>
<th>Requirement (1σ)</th>
<th>Design Estimate (1σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 x,y</td>
<td>≤ 75 μm</td>
<td>1.4 μm</td>
</tr>
<tr>
<td>M1 z</td>
<td>≤ 75 μm</td>
<td>0.87 μm</td>
</tr>
<tr>
<td>M1 Rx, Ry</td>
<td>≤ 0.375 arcsec</td>
<td>0.068 arcsec</td>
</tr>
<tr>
<td>M1 Rz</td>
<td>≤ 0.375 arcsec</td>
<td>0.054 arcsec</td>
</tr>
<tr>
<td>M2 x,y</td>
<td>≤ 75 μm</td>
<td>8.2 μm</td>
</tr>
<tr>
<td>M2 z</td>
<td>≤ 75 μm</td>
<td>1.5 μm</td>
</tr>
<tr>
<td>M2 Rx, Ry</td>
<td>≤ 3 arcsec</td>
<td>0.64 arcsec</td>
</tr>
<tr>
<td>M2 Rz</td>
<td>≤ 3 arcsec</td>
<td>3.0 arcsec</td>
</tr>
</tbody>
</table>
A commercial absolute distance measuring interferometer system was selected for the laser truss.

- Up to 800 independent metrology channels.
- Measurement uncertainty (in air) 0.5 µm/m
- Maximum measurement frequency > 500 kHz (can be used as vibrometer with much higher accuracy for high frequencies)
- Measurement length > 30 m
- Simple measurement channel consisting only of telecom fiber, collimator and triple reflector (no electrical systems on telescope)
- Almost unlimited fiber length possible (several kilometers)
- Eye safe infrared radiation
- Metrological traceability by gas absorption cell
- All componentry based on “industry hardened” high I/O telecom equipment.
Prototyping on LBT

- In 2017 GMTO proposed to prototype the metrology system on LBT.
 - Gives LBTO the opportunity to trial new metrology technology without large capital expenditure.
 - Opportunity for GMTO to gain first-hand and long-term experience with Laser Truss metrology on a working telescope.
 - LBT 22.5 m optical baseline and 8.4 m diameter borosilicate mirrors give the closest match to GMT of any working large telescope today.
 - Conveniently located, not so far from Pasadena, and with a common partner institution in Steward Observatory.
 - GMTO technical staff already very familiar with LBTO active optics systems.
 - A 3-phased prototyping effort began in August 2017.
The prototyping effort is divided into three phases:

- **Phase 1**: Deploy laser truss on the prime focus cameras, measuring each primary mirror with respect to the corresponding corrector. Test hardware, develop software. Integrate with the Telescope Control System (TCS).

- **Phase 2**: Deploy Laser Truss for the Gregorian Telescope. Measure M1, M2 and M3 relative to an instrument rotator. Integrate with TCS.

- **Phase 3**: Control both Gregorian Telescopes and measure between right and left telescopes for interferometric baseline control.

At this stage Phase 1 is basically complete and hardware is en-route for phase 2.
Phase 1 results
Closed dome measurements: Swing Arm Repeatability
Closed dome measurements: Thermal Drift

Delta X, Y, Z (microns) vs. time

Rx and Ry vs. time
Closed dome measurements: Elevation

X and Y deflections in millimeters

Deltas in Rx and Ry (arcseconds)

Delta Rx Delta Ry
Closed dome measurements: Signal strength over the elevation range

![Graphical representation of signal strength over elevation range.]
“Passive” Observing

![Graph showing LBCR X Y Z centroids with Del Z, Del X, and Del Y lines over time.](image)
The EAMT system has its own software that fully controls the unit.

This software can be accessed by other programs on the observatory network via a TCP/IP interface. All of the control, measurement and analysis functions of the native EAMT software can be called by another program over TCP/IP.

For our prototyping effort a Python script has been written that commands the EAMT to take a measurement, requests the resultant data on differential motion of the target retroreflectors, and does the necessary mathematics to produce a vector of M1 mirror position commands \(\{x, y, z, R_x, R_y\} \), such that the mirror is returned to the last “good” position relative to the corrector.

The Python script then hands this vector to a PERL script that interfaces with the TCS.
The change in relative position of the mirror and corrector at a given TMS measurement can be decomposed into “good” and “bad” changes. The good changes are the various commanded mirror position changes that have been applied since the original TMS reference measurement was made.

These must to be taken into account before applying corrections to the mirror position. Essentially the “goalposts” move and this must be taken into account.

The PERL script interface to the TCS subtracts the following known offsets from the raw measurement and applies the difference to a mirror position command.

- Pointing offsets
- Instrument offsets (filter focus, say).
- Active optics focus offsets.
- Active Optics M1 motions due to Z11 and Z22 (spherical aberration) corrections.
- Guiding offsets.
Very limited use of the system for full active control has so far been made, as the prime focus correctors are only in use ~10% of the time and further engineering time, which is heavily subscribed, is required to deliver a system ready for routine observing.

The following result shows the TMS maintaining alignment during a transiting exoplanet observation that tracked a defocused star through Zenith for 40 minutes. There was no noticeable change in the PSF during the observation, a result that improved on a similar observation without the TMS.

Active Control

Andrew Rakich
Prototyping the GMT Telescope Metrology System on LBT
Active Control

- When the variables of telescope and software conspired to work during our limited time in active control of the telescope, the results have been promising.

- After collimating the telescope at a high elevation, and locking optics positions with the TMS, the telescope can be slewed to low elevations with no noticeable misalignment of the optics.

- With the latest modifications to the control software, further engineering time is required to qualify the system for routine use during science operations.
Lessons learned to date.

- Hardware robust and reliable.
- TCP/IP communication and control works well.
- Collimator alignment maintenance is not an issue.
- 1” collimators give superior results to ½” collimators.
- Good signal maintained over collimation model range of LBT.
- There are no measurable stray light issues for science instruments utilizing CCD detectors.
- Achievable accuracies appear to be excellent and as expected.
- Range of temperature from +20C to -10C handled without problems from operability point of view.
- Temperature measurement *in situ* is important.
- System maintenance of relative position of main telescope optics to within several micron level errors seems to be a reasonable expectation.
Future Work and conclusion.

- Hardware has been purchased for the extension to Phase Two and Three prototyping: the control of the Gregorian Telescope.

- More quantitative performance information is expected from these phases because of the superior performance of the Shack Hartman Wavefront sensors in Gregorian modes.

- Gregorian metrology is expected to begin in September 2018.

- Further details of the systems performance such as for mirror radius measurement to sub micron levels and nanometric 3-D vibration trace measurement will be discussed in the paper.

- The prototyping effort to date has yielded valuable information that validates the technological approach to assisting in telescope alignment.
Development Team

🌟 GMTO:
Andrew Rakich, Patricio Schuter, Mathieu Bec, Rod Conan

🌟 LBTO:
John Hill, Mike Gairdner, Mathieu Bec, Olga Kuhn and the LBT Mountain crew

🌟 Etalon Ag.:
Heinrich Schwenke, Mark Wissmann, Kai Brenner, Yousef Rhanavard
Thanks

GMTO take this opportunity to thank LBTO and Etalon AG. For their support and collaboration in this prototyping effort.